首页> 外文OA文献 >Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data
【2h】

Performance of Smoothing Methods for Reconstructing NDVI Time-Series and Estimating Vegetation Phenology from MODIS Data

机译:mODIs数据重建NDVI时间序列和估算植被物候的平滑方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many time-series smoothing methods can be used for reducing noise and extracting plantphenological parameters from remotely-sensed data, but there is still no conclusive evidence infavor of one method over others. Here we use moderate-resolution imaging spectroradiometer(MODIS) derived normalized difference vegetation index (NDVI) to investigate five smoothingmethods: Savitzky-Golay fitting (SG), locally weighted regression scatterplot smoothing (LO), splinesmoothing (SP), asymmetric Gaussian function fitting (AG), and double logistic function fitting (DL).We use ground tower measured NDVI (10 sites) and gross primary productivity (GPP, 4 sites) toevaluate the smoothed satellite-derived NDVI time-series, and elevation data to evaluate phenologyparameters derived from smoothed NDVI. The results indicate that all smoothing methods can reducenoise and improve signal quality, but that no single method always performs better than others.Overall, the local filtering methods (SG and LO) can generate very accurate results if smoothingparameters are optimally calibrated. If local calibration cannot be performed, cross validation is away to automatically determine the smoothing parameter. However, this method may in some casesgenerate poor fits, and when calibration is not possible the function fitting methods (AG and DL)provide the most robust description of the seasonal dynamics.
机译:许多时间序列平滑方法可用于减少噪声并从遥感数据中提取植物物候参数,但是仍然没有确凿证据表明一种方法优于其他方法。在这里,我们使用中分辨率成像光谱仪(MODIS)导出的归一化植被指数(NDVI)研究五种平滑方法:Savitzky-Golay拟合(SG),局部加权回归散点图平滑(LO),样条平滑(SP),非对称高斯函数拟合(AG)和双重逻辑函数拟合(DL)。我们使用地面塔测得的NDVI(10个站点)和总初级生产力(GPP,4个站点)来评估平滑的卫星衍生NDVI时间序列,以及海拔数据来评估物候参数。源自平滑的NDVI。结果表明,所有平滑方法都可以降低噪声并改善信号质量,但是没有一种方法总是比其他方法表现更好。总体而言,如果对平滑参数进行了最佳校准,则局部滤波方法(SG和LO)可以产生非常准确的结果。如果无法执行本地校准,则无需交叉验证即可自动确定平滑参数。但是,在某些情况下,此方法可能会产生较差的拟合,并且当无法进行校准时,函数拟合方法(AG和DL)可提供对季节动态的最可靠描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号